
CARDSFlow: An End-to-End Open-Source Physics Environment for the
Design, Simulation and Control of Musculoskeletal Robots

Simon Trendel1, Yin Pok Chan2, Alona Kharchenko1,3, Rafael Hostettler1,3, Alois Knoll3, Darwin Lau2

Abstract— Motivated by the similar structure and actuation
mechanism to humans and animals, the study of musculoskele-
tal robots has gained attention in recent years. However, the
unilateral actuation property of muscles and high complexity of
the mechanical system imposes great challenges on the design
and control of such robots. An open-source realistic simulation
platform for theoretical testing would therefore be advantageous
for the research community of musculoskeletal robots. In this
paper, an end-to-end open-source framework for the design,
simulation and control of the general class of musculoskeletal
robots (CARDSFlow) is presented. The framework consists of
three advantageous features: 1) 3D computer-aided designs of
musculoskeletal robots can be automatically converted for use
with Gazebo and CASPR; 2) realistic physics simulation of mus-
culoskeletal robots within Gazebo; and 3) integration of CASPR
cable-driven robot controllers with CARDSFlow through the
ROS platform. Simulation results on a two-link planar robot
and the Roboy robot arm are presented to demonstrate the
convenience to design and simulate musculoskeletal robots using
CARDSFlow.

I. INTRODUCTION

Bio-inspired robots, such as those inspired by humans
and animals, have been studied since the beginning of the
development of robots [1]. This ranges from those with bio-
inspired functionality, such as flying [2], swimming [3] and
walking [4], to humanoids with an anthropomorphic joint
and rigid body structure [5]. More recently, the development
of robots actuated by muscles (musculoskeletal robots) have
been motivated by its higher end-effector to weight ratio
[6], actuation similarities with musculoskeletal systems [7],
expected better ability to produce human-like motion and a
platform for the study of neuromuscular control.

Typically, musculoskeletal robots are actuated by: 1) pneu-
matic artificial muscles [8], for example, the Lucy robot [9];
and 2) cables, for example, the Roboy robot [10] (Figure
1), BM-Arm [11], and Kengoro robot family [12]. The key
characteristic of such types of actuators is that they can only
provide actuation in tension but not compression, resulting
in the need of agonist and antagonist muscles (actuation
redundancy). Furthermore, to maintain the compact structure
of musculoskeletal systems, the actuators may wrap around

1S. Trendel, A. Kharchenko and R. Hostettler are with the
Roboy Project, Devanthro UG, Munich, Germany st@roboy.org,
ak@roboy.org, rh@roboy.org

2Y. P. Chan and and D. Lau are with the Department of
Mechanical and Automation Engineering, The Chinese University
of Hong Kong, Hong Kong ypchan@mae.cuhk.edu.hk,
darwinlau@cuhk.edu.hk

3A. Kharchenko, R. Hostettler and A. Knoll are with the
Department of Robotics and Embedded Systems, Technical
University of Munich, Germany Alona.kharchenko@tum.de,
{hostettl,knoll}@in.tum.de

Fig. 1: Roboy cable-driven musculoskeletal robots

the bone structure. Consequently, this creates a range of
difficulties and challenges in the modelling [13], analysis
[14]–[16] and control [17] of such systems.

In addition to the challenges caused by the actuation
properties, the increased complexity of the mechanical sys-
tem makes it difficult to realize musculoskeletal robots in
hardware. As such, the modelling and testing of algorithms
in simulation provides enormous benefits in the advances of
musculoskeletal robots. For example, the simulation of the
inverse dynamics [13] allows the required muscle forces to
produce particular motions to be determined such that the
actuators and muscle locations can be designed. Furthermore,
the control of the operational space of musculoskeletal robots
[18] is a difficult theoretical problem and the testing in a
realistic simulation environment should be performed before
the deployment on the hardware to ensure safe operations.

Existing musculoskeletal robot projects, such as the Roboy
or Kengoro, typically develop their own simulation and
visualization software. Since the simulators are specific only
to their developed robots, it cannot be easily used to study
other musculoskeletal robots to design different systems.
Moreover, these software are not easily accessible and incon-
venient to use to test different control and analysis algorithms
with realistic rigid body physics simulation.

For traditional joint-actuated robots, Gazebo [19] has been
a popular physics simulation environment with a growing
community, where common robots such as the PR2 [20] and
TurtleBot [21], can be freely accessed and conveniently used
directly out of the box. Furthermore, Gazebo uses the Robot
Operation System (ROS) [22] such that it is convenient to
incorporate different custom developed controllers and anal-
ysis modules. Moreover, simulations performed in Gazebo
and ROS can then be seamlessly adapted to operate the

corresponding robot hardware. However, Gazebo and ROS
platforms do not directly support musculoskeletal robots.

In the field of biomechanics, OpenSim [23] allows the
kinematics and dynamics of musculoskeletal systems with
physiological muscle models to be simulated. Although
widely used within biomechanics, the software cannot be
used to study and control musculoskeletal robots. For mus-
culoskeletal robots, an open-source simulation and analysis
software CASPR [24] was developed. CASPR allows dif-
ferent cable-driven robot models, analysis algorithms and
controllers to be conveniently simulated. In addition, CASPR
could also be used to operate real cable-driven robot systems
in a seamless manner [11], [25].

However, there are several limitations in CASPR within
the study of musculoskeletal robots. First, the specification
of robot, such as rigid body and cable attachment properties,
using XML files is inconvenient and prone to errors. Second,
the physics simulation used within CASPR is very simple
and does not support features such as collision and contacts.
Finally, the visualization capabilities in CASPR are very
limited and do not allow a multiple object environment
to be constructed. To the best of the authors’ knowledge,
there does not exist any complete simulation platform for
musculoskeletal robots that combines the design with real-
istic physics simulation, while allowing the incorporation of
muscle models and motion controllers.

In this paper, an open-source end-to-end design and
physics simulation framework (named CARDSFlow) for gen-
eralized musculoskeletal robots is presented. The framework
consists of three modules that connects a computer-aided
design (CAD) software (Fusion 360), the Gazebo simulator
and CASPR into one single framework. This allows: 1) 3D
CAD of musculoskeletal robots to be automatically converted
for use with Gazebo and CASPR; 2) physics simulation of
musculoskeletal robots within Gazebo; and 3) integration of
CASPR with CARDSFlow through the ROS platform. This
framework allows a convenient way to design, simulate and
control musculoskeletal robots. Furthermore, two different
controllers, one in joint space and one in operational space,
specific to musculoskeletal robots have been implemented in
CARDSFlow. Through two examples, a two-link planar robot
and the Roboy robot arm, the simplicity and practicality of
CARDSFlow to simulate and operate physical musculoskele-
tal robots are demonstrated.

II. FRAMEWORK OF CARDSFLOW

CARDSFlow consists of three components:
1) Fusion 360 CAD software to design the musculoskele-

tal robot (Section III). A module (SDFusion) is de-
veloped such that 3D CAD models of musculoskele-
tal robots can be automatically converted into SDF
and XML files that are compatible with Gazebo and
CASPR, respectively.

2) Gazebo physics simulator with support for muscu-
loskeletal robots (Section IV). This is achieved through
the Muscle Model Module developed for Gazebo that
determines the muscle forces acting on the robot.

SDFusion

model.sdf

Automatic
Model

Description
Generation

Model
Descriptions model.urdf model.xml

Gazebo CASPR Simulation
ROS

 Fusion 360 Robot
Design

Muscle
Model

Muscle
Model

Gazebo
API

Fig. 2: CARDSFlow pipeline

3) Development of controllers and analysis algorithms
through CASPR (Section V). This is achieved through
the ROS framework to communicate between CASPR
and Gazebo.

Figure 2 shows the flow, components and their interactions
in the CARDSFlow system. The key characteristic and
advantage of CARDSFlow is that the framework can be
considered as end-to-end, where from the CAD software
design of the robot to the control within a well-accepted
physics environment allow musculoskeletal robots to be
conveniently studied (Figure 3). Furthermore, by using the
same ROS topics, controllers tested in physics simulations
can be seamlessly adapted to the control of hardware robot
systems [11]. As such, the use of Fusion 360, Gazebo and
CASPR brings the benefits of the existing software together,
as it will be described in the following sections.

III. FROM THE COMPUTER AIDED DESIGNS TO GAZEBO

For the accurate simulation of robots, an accurate model of
the system is extremely important. Furthermore, the model
description is also required within model-based controllers
for the feed-forward control command. For musculoskeletal
robots, the model information, including the mass, inertia,
and muscle attachment points (or via points), is used in
both the physics simulation (Gazebo) and controller design
(CASPR). Within Gazebo and CASPR, user-defined SDF
and XML files are typically hand-crafted manually, which
is inconvenient and prone to errors.

Designing robots with 3D computer-aided design (CAD)
software is therefore advantageous, as model descriptions
can be easily obtained from the constructed CAD robot
model. Using Fusion 360 from Autodesk, different parts of
musculoskeletal robots can be easily designed (Figures 4a-
4d). However, the existing version of Fusion 360 does not
support the definition of the locations of via points, which
are critical in the modelling of musculoskeletal robots.

CAD model in
Fusion 360

Gazebo Simulation
with Muscles Control Task in Gazebo Hardware Control

Fig. 3: CARDSFlow pipeline showing the flow: 1) designing the robot in Fusion 360; 2) simulation environment in Gazebo;
3) muscle control using CASPR in Gazebo; and 4) control of corresponding robot hardware.

a) Head and neck b) Left arm

c) Hip and Spine d) Lower body

Fig. 4: Roboy 2.0 models created in Fusion 360

To extend the capability of Fusion 360 and support the
design of via points, a Python module (SDFusion) is devel-
oped using Fusion’s Python API. Users can define via points
for the robot through the GUI, and the defined model can be
automatically exported into SDF and XML model description
files that are required by Gazebo and CASPR, respectively.

A. Definition of Via Points

Muscles can be modelled by defining the via points, which
can be intuitively performed using the GUI of SDFusion in
Fusion 360 (Figure 5). Users only need to construct a point
on the model and select the link on which the muscle is
attached. For each muscle model, multiple via points can be
set to create multiple muscle segments.

B. Conversion to Model Description Files

SDFusion extracts link and joint information from the
CAD model and converts the kinematic model into tree-
structured model descriptions in SDF and XML formats
(Figure 6). Model properties such as the center of mass and

Fig. 5: Create muscle models by defining via points. Left:
Fusion 360 interface. Right: Resulting Gazebo simulation.

Fig. 6: Model Description Files exported using SDFusion
(SDF, XML)

inertia of each link are calculated automatically by defining
the material properties. User-defined via points are saved in
both SDF and XML files, which are parsed by the Muscle
Model Module (Section IV) and CASPR, respectively.

IV. PHYSICS MODELLING AND GAZEBO

A. General model of musculoskeletal robots

Musculoskeletal robots can be modelled as a multi-link
cable-driven robot (MCDR), as proposed in [13]. The system
dynamics of an n-DoF (degree of freedom) musculoskeletal
robots with m muscles can be described by the following
equation of motion (EoM):

M(q)q̈+C(q̇,q) +G(q) +we = −L(q)T f , (1)

where q ∈ Rn is the generalized coordinates (pose), M(q) ∈
Rn×n is the mass-inertia matrix, C(q̇,q) ∈ Rn is the cen-
trifugal and Coriolis vector, G(q) ∈ Rn is the gravitational
vector, and we ∈ Rn is the external wrench applying on
the system. The joint-muscle Jacobian matrix L(q) ∈ Rm×n

a) Muscle force visualization b) Roboy model with xylophone
(Coordinate frames shown)

Fig. 7: Simulation environment in RViz

relates the muscle force vector f ∈ Rm to the system wrench.
Muscle forces are bounded by a set of positive minimum and
maximum feasible muscle forces, fmin and fmax, such that

0 ≤ fmin ≤ fi ≤ fmax, ∀i : fi ∈ f (2)

B. Gazebo Muscle Model Module

With the SDF model descriptions, Gazebo constructs the
robot model and generates the rigid body dynamics terms
(left-hand side of (1)). However, the calculation of the joint-
muscle Jacobian matrix L(q) is not supported, such that the
simulation of cable-driven robots is not directly available.

To extend Gazebo’s capability to support cable-driven
robots, the Muscle Model Module is developed using the
extendable feature of SDF files and Gazebo C++ API. The
via points defined in SDFusion are saved in the same SDF file
with other kinematic properties, and are parsed to generate
muscle routings. Furthermore, this module allows complex
muscle kinematics, such as the wrapping of muscles over
bone structures, to be modelled and passed into Gazebo.

Within Gazebo, a pair of tension forces are applied for
each muscle segment at the via points as specified by the
SDF file. This allows the effect of the muscle forces acting on
the robot to be simulated in the Gazebo physics. Moreover,
the module allows different muscle actuator models, such as
cables, pneumatic air muscles, or even physiological muscles
and ligaments, to be easily simulated.

The kinematics and dynamics of muscles computed by the
module allow Gazebo to realistically simulate the physics of
musculoskeletal robots. Additionally, RViz allows the results
of the simulation to be visualized (Figure 7a), where the
muscle forces are shown as arrows. Additional information
about the model, such as coordinate frames and joint angles,
can also be shown in RViz to monitor the robot’s state.

The primary advantages of using Gazebo within the
CARDSFlow framework include: 1) leverages a well-
accepted realistic physics simulation platform using engines
such as Bullet and ODE; 2) allows multiple robots and
object environments to be easily simulated (Figure 7b); and
3) considers interactions between the robot and environment
such that contacts can be simulated and controlled.

V. INTEGRATION OF CASPR CONTROLLERS

A. CASPR controllers

In this section, two controllers for musculoskeletal robots,
in the joint and operational spaces, have been implemented
in CASPR as part of the CARDSFlow framework.

1) Joint Space CTC: The joint space computed-torque
based controller (CTC) proposed in [26] is implemented to
solve the joint space tracking problem. Given desired joint
position q, velocity q̇ and acceleration q̈ trajectories, a set
of force commands f is determined to actuate the system by
solving the following optimization problem:

minimize
f

1

2
fTHf f

subject to M (q)ac +C (q, q̇) +G (q) = −LT (q) f

ac = q̈d +Kd(q̇d − q̇) +Kp(qd − q)

0 ≤ fmin ≤ f ≤ fmax, (3)

where the cable forces are minimized with the weight Hf

and the joint position and velocity errors are compensated
by the positive definite gains Kp, Kd. The force solution are
bounded by the positive force constraints fmin and fmax.

2) Operational Space CTC: In addition to the joint space,
tracking tasks can be defined in operational space, for
example, the position of the hand rather than the joint angles
of the shoulder and elbow. To resolve the redundancy due to
the higher DoF in joint space compared with the operational
space, the following formulation is proposed to obtain the
muscle forces f given operational space trajectories:

minimize
q̈,f

1

2
q̈THqq̈+

1

2
fTHf f ,

subject to M (q) q̈+C (q, q̇) +G (q) = −LT (q) f

(ÿd − ÿ) +Kd(ẏd − ẏ) +Kp(yd − y) = 0

ẏ = J(q)q̇

ÿ = J(q)q̈+ J̇(q)q̇

0 ≤ fmin ≤ f ≤ fmax, (4)

where the cost function consists of joint acceleration q̈
and cable force f . The vector y refers to the operational
space position, J(q) refers to the joint-to-operational space
Jacobian, and the error dynamics in operational space is
controlled by the positive definite gains Kp and Kd.

B. Integration of CASPR controllers and Gazebo

Communication between CASPR controllers and Gazebo
is established through the Robotics System Toolbox in MAT-
LAB and the Muscle Model Module. CASPR achieves ROS
communication through the Robotics System Toolbox, and
the Muscle Model Module communicates with the CASPR
controller with ROS messages and the Gazebo simulator with
the Gazebo API (Figure 8).

Given joint position q and velocity q̇, force commands f
generated by the CASPR controllers are sent to the Muscle
Model Module through ROS messages. The module then
applies the set of forces on the Gazebo models. Feedback
q and q̇ are published to the ROS topic that CASPR

Gazebo
Muscle
Model

Module

CASPR
controller

f

q, q
.

Gazebo
Simulation

f

q, q
.

Gazebo API
ROS messages

Fig. 8: Communication between CASPR controllers and
Gazebo

Fig. 9: 2R-Planar robot tracking a joint space trajectory in
Gazebo simulation

has subscribed, such that the control loop is established.
Furthermore, by using the same ROS topics as in simulations,
the controllers tested in Gazebo can be seamlessly adapted
to the control of hardware robot systems [11].

VI. SIMULATION EXAMPLES

In this section, simulation examples of controlling two
musculoskeletal robots, 2R-Planar robot and Roboy’s left
arm, are presented to demonstrate the capability of CARDS-
Flow. Joint space control on the 2R-Planar robot is first
presented, followed by the operational space control on
Roboy’s left arm. Kinematics and control inputs are saved
and analyzed in CASPR, with results shown in figures 9-12.

Simulations are conducted on two sets of hardware con-
nected through local network. The first set contributes as
the platform for the Gazebo simulation environment, with
ROS-Kinetic running on Ubuntu 16.04 LTS. The second set
of hardware runs CASPR on MATLAB R2018a, Windows
8.1. This setup shows that multiple machines and operating
systems can be involved in the framework of CARDSFlow.

A. 2R-Planar Robot

The 2R-Planar robot is a 2-link, 2-DoF planar robot with
2 revolute joints (Figure 9). The 2 links are actuated by 4
muscles, which are visualized with red lines. As the end-
effector, the path of the second link’s tip is represented by
a series of light blue spheres. Joint positions [q1,q2] are
displayed to keep track of the robot’s status.

Using the joint space CTC in CASPR, a joint space
trajectory is tracked. The trajectory is defined between q =
[−0.5, 0.5], [0.5,−0.5], [−0.5, 0.5], and lasts for 8 seconds.
The controller gains are set to Kp = 2000 and Kd = 90
(damping ratio ≈ 1). With the force commands shown in

0 1 2 3 4 5 6 7

Time (s)

10

15

20

25

30

35

40

45

F
o

rc
e

 (
N

)

Force

f
1

f
2

f
3

f
4

a) Force commands f

0 1 2 3 4 5 6 7

Time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

J
o

in
t

P
o

s
it
io

n
 (

ra
d

)

q

q
1

q
2

q
d

b) Joint Position q

Fig. 10: Joint Space Control on 2R-Planar robot

Fig. 11: Roboy’s left arm tracking a flower-like trajectory in
Gazebo simulation

figure 10a, it can be seen from figure 10b that the controller
is capable of tracking the reference trajectory (dotted lines).

B. Roboy’s Left Arm

The left arm of Roboy is a 2-link 4-DoF musculoskeletal
structure, with 3-DoF at the shoulder joint and 1-DoF at the
elbow joint (Figure 11). The arm is actuated by 11 cables,
with 9 actuating the upper arm, and 2 actuating the lower
arm. The end-effector is defined on the tip of the stick that
the arm is holding. Similarly, a series of light blue spheres
is rendered to indicate the end-effector’s path.

The robot is required to track a flower-like trajectory on
the plane y2 = −0.45. The flower trajectory has a center
at y = [0.45,−0.45, 0.45], an amplitude of 0.15 and lasts
for 30 seconds. The light blue flower shown in figure 11 is
the actual path of the end-effector. Figure 12 shows that the
operational space CTC is capable of controlling the robot’s
end-effector to track the reference trajectory. This result
verifies the operational space CTC formulation on a complex
structure, and demonstrates the convenience of incorporating
custom developed controllers into CARDSFlow.

VII. CONCLUSION AND FUTURE WORKS

An end-to-end physics simulation framework that connects
computer-aided design, modelling, to simulation and control
of musculoskeletal robots was presented. Automatic and
convenient conversion from CAD models to model descrip-
tion files compatible with Gazebo and CASPR was made
possible with SDFusion. Using the Muscle Model Module,
the modelling and visualization of musculoskeletal robots
in the Gazebo environment with a range of useful features
was achieved. The module also facilitates the communication
between CASPR controllers and the Gazebo simulation. Two
control tasks in joint space and operational space were

0 5 10 15 20 25

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

O
p

e
ra

ti
o

n
a

l
P

o
s
it
io

n
 (

m
)

y

y
1

y
2

y
3

y
d

a) Operational Position y

0 5 10 15 20 25

Time (s)

-5

0

5

10

15

O
p

e
ra

ti
o

n
a

l
P

o
s
it
io

n
 E

rr
o

r
(r

a
d

)

10
-3 Tracking error

y
1

y
2

y
3

b) Operational Position Error ey

0 5 10 15 20 25

Time (s)

-1

-0.5

0

0.5

1

1.5

J
o

in
t

P
o

s
it
io

n
 (

ra
d

)

q

q
1

q
2

q
3

q
4

c) Joint Position q

0 5 10 15 20 25

Time (s)

50

100

150

200

250

300

350

400

450

500

F
o

rc
e

 (
N

)

Force

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
10

f
11

d) Force commands f

Fig. 12: Simulation Results of Operational Space Control on
Roboy’s left arm

performed and the results demonstrated the practicality of
CARDSFlow in the operation and controller design of mus-
culoskeletal robots. The variety in the demonstrated robots
also showed the potential of extending the framework to
other classes of musculoskeletal robots.

ACKNOWLEDGEMENT

The work was supported by the European Unions Horizon
2020 Framework Programme for Research and Innovation
under the Specific Grant Agreement No. 785907 (Human
Brain Project SGA2), the Germany/Hong Kong Joint Re-
search Scheme sponsored by the Research Grants Council
of Hong Kong and the German Academic Exchange Service
of Germany (Reference No. G-CUHK410/16), and the Early
Career Scheme sponsored by the Research Grants Council
(Reference No. 24200516).

REFERENCES

[1] I. Kato, S. Ohteru, K. Shirai, T. Matsushima, S. Narita, S. Sugano,
T. Kobayashi, and E. Fujisawa, “The robot musician ‘wabot-2’ (waseda
robot-2),” Robot., vol. 3, no. 2, pp. 143–155, 1987.

[2] A. Ramezani, S.-J. Chung, and S. Hutchinson, “A biomimetic robotic
platform to study flight specializations of bats,” Sci. Robot., vol. 2, p.
eaal2505, 2017.

[3] Z. G. Zhang, N. Yamashita, M. Gondo, A. Yamamoto, and T. Higuchi,
“Electrostatically actuated robotic fish: Design and control for high-
mobility open-loop swimming,” IEEE Trans. Robot., vol. 24, pp. 118–
129, 2008.

[4] N. Perrin, D. Lau, and V. Padois, “Effective generation of dynamically
balanced locomotion with multiple non-coplanar contacts,” in Robotics
Research, ser. Springer Proceedings in Advanced Robotics, A. Bicchi
and W. Burgard, Eds. Springer, Cham, 2018, vol. 3, pp. 201–216.

[5] N. G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A. J. Ijspeert, M. C. Carrozza, and D. G.
Caldwell, “icub: the design and realization of an open humanoid
platform for cognitive and neuroscience research,” Adv. Robot., vol. 21,
no. 10, pp. 1151–1175, 2007.

[6] A. Pott, H. Mütherich, W. Kraus, V. Schmidt, P. Miermeister, and
A. Verl, “IPAnema: A family of cable-driven parallel robots for indus-
trial applications,” in Cable-Driven Parallel Robots, ser. Mechanisms
and Machine Science, A. Pott and T. Bruckmann, Eds. Springer
International Publishing, 2013, vol. 12, pp. 119–134.

[7] S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. De-
vereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H. G.
Marques, P. Milosavljevic, B. Mitra, B. Svetozarevic, V. Potkonjak,
R. Pfeifer, A. Knoll, and O. Holland, “Toward anthropomimetic
robotics: Development, simulation, and control of a musculoskeletal
torso,” J. Artif. Life, vol. 19, no. 1, pp. 171–193, 2013.

[8] B.-S. Kang, C. S. Kothera, B. K. S. Woods, and N. M. Wereley,
“Dynamic modeling of mckibben pneumatic artificial muscles for
antagonistic actuation,” in Proc. IEEE Int. Conf. Robot. Autom., 2009,
pp. 182–187.

[9] B. Verrelst, R. V. Ham, B. Vanderborght, F. Daerden, D. Lefeber,
and J. Vermeulen, “The pneumatic biped “lucy” actuated with pleated
pneumatic artificial muscles,” Auton. Robot., vol. 18, no. 2, pp. 201–
213, 2005.

[10] R. Pfeifer, P. Y. Tao, H. G. Marques, S. Weydert, D. Brum,
M. Weyland, R. Hostettler, F. Volkert, V. Gmünder, and D. Halbeisen.
Roboy anthropomimetic robot. [Online]. Available: www.roboy.org

[11] J. Eden, C. Song, Y. Tan, D. Oetomo, and D. Lau, “CASPR-ROS:
A generalised cable robot software in ROS for hardware,” in Cable-
Driven Parallel Robots. Springer International Publishing, 2018, pp.
50–61.

[12] Y. Asano, S. Nakashima, T. Kozuki, S. Ookubo, I. Yanokura, Y. Kaki-
uchi, and M. I. Kei Okada, “Human mimetic foot structure with multi-
DOFs and multi-sensors for musculoskeletal humanoid kengoro,” in
IEEEIROS, 2016, pp.2419−−2424.

[13] D. Lau, D. Oetomo, and S. K. Halgamuge, “Generalized modeling of
multilink cable-driven manipulators with arbitrary routing using the
cable-routing matrix,” IEEE Trans. Robot., vol. 29, no. 5, pp. 1102–
1113, 2013.

[14] D. Lau, J. Eden, D. Oetomo, and S. K. Halgamuge, “Musculoskeletal
static workspace of the human shoulder as a cable-driven robot,”
IEEE/ASME Trans. Mechatronics, vol. 20, no. 2, pp. 978–984, 2015.

[15] D. Lau, J. Eden, S. Halgamuge, and D. Oetomo, “Cable function anal-
ysis for the musculoskeletal static workspace of a human shoulder,” in
Cable-Driven Parallel Robots, ser. Mechanisms and Machine Science,
A. Pott and T. Bruckmann, Eds. Springer International Publishing,
2015, vol. 32, pp. 263–274.

[16] D. Lau, D. Oetomo, and S. K. Halgamuge, “Inverse dynamics of
multilink cable-driven manipulators with the consideration of joint
interaction forces and moments,” IEEE Trans. Robot., vol. 31, no. 2,
pp. 479–488, 2015.

[17] M. Jäntsch, C. Schmaler, S. Wittmeier, K. Dalamagkidis, and A. Knoll,
“A scalable joint-space controller for musculoskeletal robots with
spherical joints,” in IEEE Int. Conf. Robot. and Biomimetics, 2011,
pp. 2211–2216.

[18] J. Eden, Y. Tan, D. Lau, and D. Oetomo, “Reference state trajectory
generation for output tracking with constraints using search trees,” in
American Contr. Conf., 2018.

[19] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst., 2004, pp. 2149–2154.

[20] S. Cousins, “ROS on the PR2 [ROS topics],” IEEE Robot. Autom.
Mag., vol. 17, no. 3, pp. 23–25, 2010.

[21] W. Garage. Turtlebot. [Online]. Available: https://www.turtlebot.com/
[22] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,

E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in ICRA Workshop on Open Source Software, vol. 3.

[23] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T.
John, E. Guendelman, and D. G. Thelen, “OpenSim: Open-source
software to create and analyze dynamic simulations of movement,”
IEEE Trans. Biomed. Eng., vol. 54, no. 11, pp. 1940–1950, 2007.

[24] D. Lau, J. Eden, Y. Tan, and D. Oetomo, “CASPR: A comprehensive
cable-robot analysis and simulation platform for the research of cable-
driven parallel robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot.
Syst., 2016, pp. 3004–3011.

[25] K. Crolla, P. H. H. Cheng, D. Y. S. Chan, A. N. F. Chan, and
D. Lau, “Inflatable architecture production with cable-driven robots,”
in Learning, Adapting and Prototyping: 23rd Int. Conf. on Computer-
Aided Architectural Design Research in Asia, T. Fukuda, W. Huang,
P. Janssen, K. Crolla, and S. Alhadidi, Eds., 2018, vol. 1, pp. 9–18.

[26] A. B. Alp and S. K. Agrawal, “Cable suspended robots: Design,
planning and control,” in Proc. IEEE Int. Conf. Robot. Autom., 2002,
pp. 4275–4280.

