
nthropomimetic robots sense, behave, interact, 
and feel like humans. By this definition, they 
require human-like physical hardware and 

actuation but also brain-like control and 
sensing. The most self-evident realization 

to meet those requirements would be a human-like 
musculoskeletal robot with a brain-like neural control-
ler. While both musculoskeletal robotic hardware and 
neural control software have existed for decades, a scal-
able approach that could be used to build and control 
an anthropomimetic human-scale robot has not yet 
been demonstrated. Combining Myorobotics, a frame-
work for musculoskeletal robot development, with 
SpiNNaker, a neuromorphic computing platform, we 
present the proof of principle of a system that can scale 
to dozens of neurally controlled, physically compliant 
joints. At its core, it implements a closed-loop cerebel-
lar model that provides real-time, low-level, neural con-
trol at minimal power consumption and maximal 
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extensibility. Higher-order (e.g., cortical) neural networks 
and neuromorphic sensors like silicon retinae or cochleae 
can be incorporated.

Combining Hardware and Computer Architecture
A major challenge and vision for articulated robots is to 
behave and interact with humans in a safe and natural man-
ner. Robots that mimic the mechanical properties of the 
human build strive toward both attributes simultaneously 
[1], [2], as, by design, they possess built-in compliance and 
relatively natural�i.e., human-like�mass distribution and 
dynamics. Musculoskeletal robots in particular offer light-
weight, low-inertia end effectors because the main actua-
tors, the skeletal muscles, can be kept at rest. Figure 1 
shows a design that coarsely mirrors a human arm. Most of 
the muscle mass is rigidly attached to the torso. Muscles con-
nect to the distal bone only via tendons, which have a negli-
gible weight. In this way, two passive safety aspects, which 
minimize the head injury criterion [1], are intrinsic to the 
anthropomimetic musculoskeletal architecture: compliance 
and minimal moving mass.

Similarly bioinspired approaches on the controller side are 
simulated or emulated biological neural networks, because 
the human brain and central nervous system are the most rel-
evant reference for natural control of musculoskeletal limbs. 
Neural control as done by animals or humans is the most ele-
gant, versatile, and energy-efficient way to use musculoskele-
tal systems. Just as the human-like mechanical build has 
inherent passive safety advantages, brain-like control has 
desirable active safety features. The human nervous system 
implements active compliance on multiple levels. Arguably 
more importantly, though, humans are perfectly accustomed 
to human-like behavior. Despite the fact that your colleagues 
could, if so inclined, injure you or others, working with 
humans is generally considered safe and does not require any 
special training. Consequently, there is every hope that their 
natural, and, in this sense, predictable behavior could gain 
anthropomimetic robots human-like safety attributes. The 
most demanding requirements and challenges on both the 
robotic hardware and the controller side are scalability and 
usability. Anthropomimetic robots have been built by numer-
ous research groups, such as the Jouhou System Kougaku 
Laboratory of the University of Tokyo and partners within 
the European Union-funded project Embodied Cognition in 
a Compliantly Engineered Robot (Eccerobot) [3], [4], among 
others. However, those systems were custom designed, most-
ly using complex hardware and software that inhibits repro-
duction across labs and involves high production costs [5]. 
The situation is similar with computing platforms. Robotic 
applications require flexible interfaces and strict real-time 
execution of large neural simulations [6]. Different neuro-
morphic architectures and neuroaccelerators have been 
developed, yet most of them, like those based on graphics 
processing units [7], [8], lack in terms of scalability. Special-
purpose systems like those based on field-programmable 
gate arrays (FPGAs) [9], [10] or custom silicon [11], [12] are 

usually too inflexible for a 
nonexpert to implement 
and investigate custom 
learning rules, synapse 
types, or cell models.

To this end, the pre-
vailing architecture for 
neural simulations and 
neural controllers is still 
the desktop computer, 
which we define in the 
context of this work as a 
Von Neumann architec-
ture with a modest num-
ber of computing cores that share a common large random 
access memory (RAM). Depending on the underlying 

Figure 1. The complex Myorobotics arm mimicking the complexity 
of a human arm without spatula. Nine muscles cooperate to 
control the ball-in-socket joint. One of these muscles, relating 
to the biceps, is biarticular, as it is attached so that it affects the 
motion of two joints, effectively coupling the shoulder and  
elbow joint.
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computations, such architectures are typically not optimal for 
simulating large neuronal networks (the human cerebellum 
alone comprises more than 1011 neurons [13]), which are 

inherently parallel [12].
In this article, we pres-

ent the unique combina-
tion of musculoskeletal 
robotics hardware (Myor-
obotics) and neural con-
trol substrate implemented 
on a scalable spiking 
neural network (SNN) 
infrastructure (SpiNNa-
ker). We demonstrate how 
these technologies can 
address the aforemen-
tioned challenges and 
facilitate the development 
of human-scale anthro-
pomimetic systems that 

are controlled by brain-like SNNs. It is our conviction that 
SpiNNaker and Myorobotics pave the way for large-scale, 
complex neurorobots.

SpiNNaker
SpiNNaker [14] is a computer system designed for real-time 
simulations of SNNs by the Manchester Advanced Processor 
Technologies Research Group. A typical SpiNNaker system 
comprises thousands of ARM968 processing cores, which 
can run arbitrary code. They are distributed on a quasi-

seamlessly extensible mesh network that is spanned by spe-
cial multicast routers at its nodes. SpiNNaker�s multicast 
routers are optimized for small (40 or 72 b wide) data 
packets. Those SpiNNaker packets typically resemble 
action potentials or neural spikes in an SNN simulation. 
They typically convey only the source address of their 
originating neuron, from which the routers deduce the 
routing direction based on a user-programmed routing 
table. Every SpiNNaker chip houses one router, 18 SpiNNa-
ker cores (each with 96 kB of local memory), and 128 MB 
of shared synchronous dynamic RAM. 

The Manchester group provides an open software 
framework that promotes an event-driven programming 
model through the Spin1 application programming inter-
face [14]. Implementations of PyNN, a common interface 
for neuronal network simulators [15], and Nengo, a graphi-
cal and scripting-based software package for simulating 
large-scale neural systems [16], are provided as a high-level, 
user-friendly way to specify neural networks. These net-
works are then automatically mapped, uploaded, and exe-
cuted on SpiNNaker. The entire software framework is 
open source, so it can be extended and modified by its 
users (see https://github.com/SpiNNakerManchester).

In terms of SNN simulation performance, SpiNNaker 
is superior to desktop computers by orders of magnitude. 
As a rule of thumb, a single SpiNNaker chip ( )P 1 W.  
can handle a network of 10,000 leaky integrate-and-fire 
neurons in real time. A desktop computer needs a high-
performance processor ( )P 50 W.  with fast memory to 
perform the same task. A single SpiNN-5 board contains 
48 SpiNNaker chips drawing about the same amount of 
electrical power ( )P 50 W.  but providing about 50 times 
the computational power. Finally, the system scales from 
18 (single chip) to over 1 million cores (57,600 chips), so 
the system size can be adapted to a wide range of neural 
network sizes by interconnecting an appropriate number 
of SpiNNaker boards. Whereas the maximum system size 
might not be relevant to the robotics community, the scal-
ability, power efficiency, flexibility, and ease of use cer-
tainly are. SpiNNaker is designed for real-time SNN 
simulations. Given proper interfaces, it offers the prime 
opportunity to let large SNNs interact with and adapt to 
the real world.

Myorobotics
Myorobotics is a tool kit for modular musculoskeletal robots 
that encompasses the full life cycle of robot design. Robots can 
be assembled, optimized, and simulated from primitives, then 
built and controlled from the same software. The robots are 
assembled from a set of primitives: bones, muscles, and joints, 
which are shown in Figure 1. The most interesting of those 
building blocks, the muscle, is detailed in Figure 2. Its body  
is made of three-dimensional (3-D) printed polyamide (PA). 
It is actuated by a 100 W dc motor (Maxon Motor EC series) 
that coils up a cable�the tendon. Three pulleys route the ten-
don in a triangular fashion. One of the pulleys is attached to a 

Figure 2. The Myorobotics muscle with its components. The 
tendon (red cable) is routed in a triangular fashion in the muscle 
to create a nonlinear net spring force. The tendon force is sensed 
by measuring the spring displacement through a magnetic strip 
fixed to the guiding rod of the spring that slides by a hall-effect 
encoder. This allows calculation of the respective force from a 
known spring constant and tendon routing geometry.
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set�  is at the rightmost position, act�  still on the far left side. 
In this situation, the right muscle should clearly pull more. 
The teaching signal reacts accordingly: R�  is at its maximum, 
resulting in a high InOR firing rate. The corresponding GrC-
PuCR weights decrease accordingly. In subsequent similar 
situations this results in less DCNR inhibition by the PuCR 
population and more motor output �R. So after five minutes 
of run time (and learning), the system can follow the trajec-
tory much better [Figure 6(b)]: act�  tracks set�  much more 
closely, and the cerebellar model has learned to do antagonis-
tic control. The cerebellum can also learn to follow different 
waveforms or manually controlled trajectories (see https://
youtu.be/y6MwOtW3_kQ for a video demonstration).

Note that, in the given example, the network output is the 
sole control input to the robot arm. It controls the motors 
directly via pulsewidth modulation. While this nicely dem-
onstrates the learning capabilities of the network, it does not 
mirror the biological antetype. In a more biologically realistic 
scenario, the cerebellum would output a corrective term that 
adds to a (cortical) forward-kinematic control signal.

Scalability and Constraints
Our present configuration runs on a single SpiNNaker chip. It 
utilizes only 16 SpiNNaker cores, 2% of a single SpiNN-5 

board. Consequently, there is ample room for adding more 
joints and actuators as well as higher-level (e.g., cortical) neu-
ral networks. With SpiNNaker being a scalable system, com-
puting resources are clearly no longer the bottleneck.

Our SpiNN-IO board connects the robot and the desktop 
computer with SpiNNaker. Its microcontroller limits the 
effective, combined update rate of input and output popula-
tions to about 500 kHz [22]. In effect, our current system 
could handle 500 input/output (I/O) populations at an 
update rate of 1 kHz. As each I/O population occupies a sin-
gle SpiNNaker core, those neural populations would fill 
about 60% of a single SpiNN-5 board. A limit of 500 sensory 
streams at 1 kHz update rate translates to roughly 100 actua-
tors, or dozens of joints that could be controlled with a single 
or few SpiNN-5 boards�within an order of magnitude to a 
human-scale robot. This limit could be alleviated by using 1) 
more than one SpiNN-IO (on separate SpiNN-5 boards), or 
2) a modified SpiNN-IO design that uses SpiNNaker�s  
interboard connectors. FPGAs on the SpiNN-5 board multi-
plex eight SpiNN-Link ports on each connector.

The remaining bottleneck is the communication between 
SpiNN-IO and the robot. In our current setting, we can use 
up to four separate CAN buses, which can manage up to four 
joints (eight Myorobotics actuators) at an update rate of 
500 Hz. By using the full Myorobotics electronics, namely up 
to six MYO-Ganglia connected to a dedicated FlexRay con-
troller, up to 12 joints (24 actuators) can be used at the same 
update rate. Again, with multiple SpiNN-IO boards, each 
with a dedicated FlexRay controller, we can alleviate this limit.

Discussion
By demonstrating the control of a musculoskeletal joint with 
a simulated cerebellum running in real time, we successfully 
combined robotic hardware (Myorobotics) and simulation 
platform (SpiNNaker). Both Myorobotics and SpiNNaker 
offer scalability and usability: They can be extended in a 
straightforward manner, with no major roadblocks in sight 
toward systems approaching human-level complexity. Of 
course, many components still have to be added to arrive at a 
system that can interact with its environment in an intelligent 
way. Fortunately, a number of suitable technologies are readily 
available today.

Sensors
While any sensor could be added to our framework, event-
based systems are the most natural fit. Their sensory address-
event-representation (AER) maps directly onto SpiNNaker 
packets, i.e., neural spikes in SNN simulations. The events 
emitted by an AER auditory sensor, or silicon cochlea [28], 
for instance, represent a sound�s momentary frequency-
resolved power spectrum. Their address encodes a specific 
frequency. The repetition rate of events with the same 
address encodes the respective spectral weight. Events emit-
ted by an AER vision sensor, or silicon retina, typically repre-
sent a sudden, pixel-local change in brightness. Here, the 
address encodes the pixel coordinate. Silicon retinae [22], 

Figure 7. Roboy, a human-like, musculoskeletal robot with 28 
degrees of freedom and 48 motors, to be controlled by brain-
inspired systems. (Photograph courtesy of Adrian Baer.)
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[29] and cochleae have 
previously been integrat-
ed with SpiNNaker. They 
are perfectly compatible 
with our interface.

Intelligence
SpiNNaker can serve as a 
computing back end for 
PyNN [15] or Nengo [16]. 
Neural networks specified 
in those languages can 
often be run directly on 
SpiNNaker or require 
only minor modifications 
to be made, when porting 
a network from one com-
pute back end to another. 
Missing software features, 
in our case a learning rule 
and I/O handlers, can be 

added to SpiNNaker�s open source framework. Many available 
models can be ported and integrated into the system with 
minor effort.

Systems
Neural models available for either PyNN or Nengo include 
diverse brain structures. In fact, the world�s largest functional 
brain model, Spaun [30], is defined in Nengo. An embodied 
version of the model that can interact with the physical world 
as well as with humans would be an interesting test bed for 
human-robot interaction and cognitive science [31]. A 
Spaun-like brain model combined with advanced musculo-
skeletal robots like Roboy [3] (Figure 7) would herald a whole 
new era of robotic research. Our proof-of-concept system 
combining SpiNNaker and Myorobotics paves the way for 
exactly these kinds of endeavors, which we hope to stimulate 
with this article.

A typical human cerebellum comprises about 100 bil-
lion neurons [13], about as many as the rest of the brain. 
A realistic simulation of such a complex large-scale sys-
tem will rely not just on massive computing resources; it 
also requires a detailed and realistic environment to inter-
act with. Therefore, real-time capable neurosimulators in 
conjunction with robots will eventually become an essen-
tial tool of brain research. Practical and scalable systems 
like the one presented enable a mutual interaction 
between neuroscience and robotics: robots can help to 
advance neuroscience just as neuroscience helps us to cre-
ate more natural robots.
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